

Aerospace Information Research Institute(AIR) Chinese Academy of Sciences(CAS)

Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series

M Menenti^{1,2} K. Tran³ L. Jia¹, S. Alfieri², F. Foroughnia² L. lannini², T. Bangira^{2,4}

¹State Key Laboratory of Remote Sensing Science
²Delft University of Technology, The Netherlands
³College of Geospatial Information Science and Technology, Capital Normal University
⁴Stellenbosch University

Global challenge: Earth Observation Water Cycle

The water cycle dominates the Earth-climate system as shown in this schematic of the water cycle (USGCRP, 2003).

Schematic overview of freshwater diversions within the terrestrial water cycle (Shiklomanov, 1999; Rohwer et al., 2007).

Motivation

Large intra and interannual variability: upstream inflow, local rainfall, water management

- High probability of cloud cover during the rainy season: 85% to 95% of VMD covered by persistent clouds
- Develop and evaluate a method to monitor surface water based on a combination of SAR and multi-spectral moderate resolution images
- Focus on simple, rapid water / non water discrimination methods such as thresholding to analyse reliably large data sets over time
- Avoid a requirement for in-situ training data
- Address the variability in time and space of thresholds separating water and nonwater
- > Aim for Near Real Time (NRT) monitoring of surface water

Synergies with parallel studies in Southern Africa and Northern Italy

(Bangira et al., 2015 and 2016), (Foroughnia et al., 2022), (Tran et al., 2022)

- VH and VV backscatter vs time
- Rice phenology: preparing planting bed, nursery, vegetative, reproductive stage and maturation stages,(adapted from Nguyen et al. 2016)
- VH follows phenology better
- Much higher backscatter at comparable water level due to vegetation

Significant spatial variability during the flood period Two random samples shown

www.aircas.ac.cn

- > Land: surface roughness and soil moisture affect VH and VV backscatter
- Water: tall, emerging vegetation, with vertically oriented elements. When the signal penetrates the canopy and reaches the water surface, double-bounce reflection and multiple scattering occur.
- Water: capillary waves increase back-scatter and water may appear bright

(Bangira et al., 2015) www.aircas.ac.cn

- 2nd September
- Smooth water surface has very low backscatter

waves with Bragg wavelength λ_B will cause microwave resonance.

 Accuracy of theoretical models ~1 dB and not adequate

Estimating the threshold: OTSU method

(Bangira et al., 2015)

Flood monitoring algorithm using change-detection-based time series analyses of SAR Sentinel-1 images (Tran et al., 2022) www.aircas.ac.cn

Delineation of flooded area

t	Non-water pixel	Non-flooded pixel
t	Water pixel	
t-1	Non water	Flooded at time t
	Water	
t-1 flood map	Flooded	Flooded at time t
"	Non-flooded	Non-flooded at time t

Flood monitoring algorithm using change-detection-based time series analyses of SAR Sentinel-1 images

Monitoring surface water map

Histograms of Sentinel-1 VH (a), Sentinel-2 NDWI (b), and Sentinel-2 MNDWI (c) images acquired on 11 April 2017. Dashed red lines: optimal Otsu thresholds.

Surface water maps during the flood event in 2017 were derived applying the dynamic Otsu thresholding algorithm to the SAR Sentinel-1 time series (Tran et al., 2022)

6th Asia-Oceania Group on Earth Observations (AOGEO) Workshop Macau 29 - 31 May 2023

www.aircas.ac.cn

Evaluation of surface water map

(Tran et al., 2022)

Visual comparison of surface water delineation derived from Sentinel-1 VH images (left column) and Sentinel-2 Full Resolution Browse images (right column), during three main periods (rice sowing period – first row, flood event – second row, and rice's maturation stage – third row)

Full Resolution Browse (FRB) images: S2 / MSI images optimized for high resolution, true colour image interpretation

105¹20'E 105¹25'E 105¹25'E 105¹25'E 105¹25'E 005¹25'E 005¹25'E

Monitoring flood extent

Flood extent maps during the flood event in 2017 using the change-detection-based time series analyses on the derived surface water maps derived from the SAR Sentinel-1 data

www.aircas.ac.cn

Concluding remarks

- Complex AI methods provided marginal improvements on dynamic thresholding
- Fully automated thresholding techniques with SAR and optical data is viable for classifying complex waterbodies, but further refinements are required to improve accuracies.
- Approach is feasible thanks to full, unrestricted availability of satellite data, particularly S1/ SAR, S2/ MSI and L8/ OLI
- Information on propagation and retreat of flood should be exploited to identify vulnerabilities and plan interventions to mitigate floods and their impacts

Thank you!

Aerospace Information Research Institute(AIR) Chinese Academy of Sciences(CAS)

www.aircas.ac.cn

